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SUMMARY
PROBLEM

To analyze dynamically the deformation of two types of structures which are
assumed to have internal resistance of the firmo-viscous type and to be subjected to side
blast loading.

FACTS

This study is the second in a general analytical investigation of the blast loading
of structures. Previously, the various elements of the problem were enumerated and
discussed. Among these were stress-strain laws, including damping. An illustrative prob-
lem of internal forces was analyzed. The dynamical analysis, however defective, is supe-
rior to surmises of structural damage based on statical analysis only and is amenable to
simple numerical calculation.

DISCUSSION

In various tall buildings the resistance to applied loads may be essentially of a
shear tvpe. Also, there may be a viscous element in the total internal resistance. A method
for analyzing these cases is presented. A structure is supposed subjected to side blast of
the type described in ““ The Effects of Atomic Weapons”’ (3). This structure is representable
as a series of rigid masses supported by columns which are not cross-braced. Another
structural model of considerable interest is that of a vertical systemn of rigid masses acted
upon by external impulsive forces and coupling forces which are internal to the structure.
This model is especially applicable to structures composed of massive blocks of masonry
cemented together; it also bas application to buildings for which the mass may reasonably
ve assumed to be concentrated at floor levels. The latter application was suggested in
“The Effects of Atomic Weapons' (3) and was used earlier for a building considered as
a two-degree-of-freedom system subjected to earthquake motions.

CONCLUSIONS

I. The type of analysis presented is considered to be of value in predicting damage
caused by blast against a multi-storied building or similar structure. This point of view
is advanced despite obvious defects in idealizations of the type involved.

2. The method of treating shear-frame building may be utilized in the analysis of
simiiar structural units oceurring in equipment and machines subiected to dvnamic loads.
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However, it will still be necessary to determine suitable stress-strain laws in each particular

case of interest.

3. Investigations involving the firmo-viscous hypothesis emphasize the need for
more reliable information on structural damping. Considerable effort to study the use of
damping laws in structural analysis seems to be warranted at the present time.
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INTRODUCTION

In a previous paper (2) the various elements of the problem of blast loading of
structures were enumerated and discussed. Among these were stress-strain laws, including
damping. Also, in connection with an illustrative problem which was solved it was noted
that the formal mathematical description and solution might represent a case in which
resisting forces were of the ‘“‘perfectly plastic’ type or equally well a case in which the
resisting forces were of the Coulomb frictional type. While the mathematical equations
describing these two cases are identical the physical reality considered is different. In the
one the resisting force is produced by the plastic deformation of a coupling material be-
tween the successive blocks composing the idealized structure. In the other case the re-
sisting force is thought of as produced by the rubbing together of two adjacent surfaces.
The first case is a modification of that treated in “The Effects of Atomic Weapons” (3).

Many other kinds of internal resistance are treated in rheology (4) which is the
science of the deformation and flow of matter. Some of the laws of resistance are shown
in Fig. 1. They are represented on three axes representing the shearing stress 7, the shear-
ing strain v, and the time rate of change of shearing strain <, respectively. The equations
corresponding to the diagrams are also given. The resistance law shown in Fig. 1(c) is
the one utilized in the previously mentioned paper (2). The one corresponding to the
Voigt (5) or Kelvin (4) solid is used in the present paper. This model has been used con-
siderably in structural analysis in the past (6). It may be considered to describe a damping
force in the case of a vibrating body or simply as a distortional rate resistance if there is no
noticeable restoring force. While the law indicates too severe damping in the higher modes
of vibration of a structure (6) it still may give useful results in the analysis of some vi-
brating concrete structures. Also, it may be useful in predicting damage in structures
which are subjected to forces so large that the elastic restoring forces may be neglected.
The general dynamical analysis in this latter case is amenable to reasonably simple nu-
merical calculation. This dynamical analysis, however defective, is surely superior to sur-
mises of structural damage based on statical analysis only.

In various tall buildings the resistance to applied loads may be essentially of a shear
type. Also, there may be a viscous element in the total internal resistance. A method for
analyzing these cases is presented.

ORO-T-198 3
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SIDE BLAST LOADING OF A MULTI-STORIED STRUCTURE

A structure is supposed subjected to side blast of the type described in ‘‘ The Effects

of Atomic Weapons’ (3). This structure is representable as a series of rigid masses sup-

ported by columns which are not cross-braced (See Fig. 2.)

77 777r/0///1/ 4 1

Fig. 2

Deformat:ons are of the shear rather than of the bending type. This structure is

thought of as a uniform solid with distributed mass and shear resistance as suggested by
M. Biot (1). The mass density, effective section area, and shear modulus are averaged

quantities. An element of such an idealized solid is shown in deformed position in Fig. 3.

The shear frames deform so that

=g

where w = displacement in transverse direction.
Biot assumed the stress-strain law to be that of the Hooke solid:
r =Gy,

where the shear modulus G is assumed to be an effective constant throughout the length.

ORO-T-198




On this basis the equation of motion can be written in the usual fashion for a one-dimensional
shear wave:

Gov.du, (1)
p 0z ¢
where p = average mass per unit volume.

The Biot derivation was intended for cases in which the excitation of the structure
was caused by earthquake movement of the ground. Now if a blast load P(z,t), as shown
in Figs. 2-3, acts on the structure and the stress-strain law is that of the firmo-viscous
solid (7), Fig. 1(d), expressed analytically as

T =Gy + uy,
then the equation of motion readily becomes

(ja’w+;_z d*w +P(z,t)_§j1_v
por par:dt pA o

where u = coefficient of viscous resistance (assumed constant)
A = effective section area in shear (assumed constant).

x

as |
dw—o{ln— | /S ()x:-}-

P (x, 1) g H a",/‘*a.
== T

—{ W p&——

(P——

Y

Fig. 3

The desired soluticn of the blast loading problem will be a displacement function
w(z,t) which satisfies Eq. 1, the boundary conditions

w=0 at =0

Jw o'w
AG-6;+[.1A’67—8'—[—0 at =z l (2)
(where [ is height of building), and the initial conditions
w(z,0) =0, w(z,0) =0 (3)

for a structure which 18 at rest before the biast ioading.
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By separation of variables and application of the boundary conditions of Eq. 2
the transcendental frequency equation is found to be

cos - -l-' 0,
a

\/(‘;
where a = \/ —-
p

This equation is satisfied by the roots

nmwa

A

wheren=1,3,5
Then the solution of Eq. 1 will have the form

o

. nwx
ga(t) - sin T (4)

n=135

in which the functions ¢.(¢{) may be found by use of the Lagrangian method (8). This
involves computing the kinetic energy T, the potential energy V, the Rayleigh dissipation
function F (9), and the generalized force Q., which have the values:

oA [ ., pAl X .,
'I=-—‘-fu dr——:‘- 2 gn

< n=13.5
. A(:f (6u> TAC .2
= r = niql
l()l "_%’5
= udA [ Pw . A I
F=- - = 2,2
2 Jo dr* dt e 161 2 "Yn

n=13.39
!
Qn=10) [ p2) sin "2 dz,

assuming P(xt) = p(z) - f(1).

Substituting the values of T, V, and F in Lagrange’s equations

d [ OF av oF
dt (a?;i> M il el

the differential equations of motion for each normal coordinate are:

. nw? u . n‘r? G 2
S T e 9 ®

where (n =1, 3, 5,...).

The solutions of these independent ordinary differential equations, satisfying initial
conditions in Eq. 3, may be easily obtained by use of Laplace Transforms (10). Then,
the displacement function for the duration of the blast pulse is:

w(z,t) = i 1 sin & f H.(r)e %¢=" gin £, (t — 7) dT, (6)

n=135

ORO-T-198 7
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where H.(71) = f(‘r) f p(z) sin 277 gr

240l
5. =N M

8
§o= Vi - 02

If the blast pulse is of duration ¢, and w(z,t,), w(z,,,) are the displacements and
velocities, respectively, at ¢ = ¢,, then the solution for ¢t > ¢, is:

w(z,t) = 3 i e~hu-t [{(sin (i + 2 cos E.t,)¢ e E"t' : W} sin &at
8 ]

ne=13, "

+ {(cos .y — ?—:sin E..t.)(b - %"-‘—' : V/l cos E.t] sin n—;li )

t
where ¢ -j; w(zx,¢) sin n_;;z dz

]
V= j; w(z,b) sin "—21—” dz.

Equation 6 has the form of a transient forced vibration with damping while Eq. 7
represents a damped free vibration. Owing to the presence of the elastic restoring force
the motion of the structure following the pulse will consist of a damped oscillation about
the original configuration of equilibrium.

It is interesting to examine two special limiting cases of the preceding solution.
The first case is that of a structure for which the internal viscous resistance is so small
that it may be neglected; i.e., effectively a Hooke solid. Tke solution then becomes:

< |

w(zt) =

n=138

mr.r

f Hut)sinp,(t —7)dr for0 St St (8)

w(zl) = % 2 [(¢ sSin paly + g’ cos p.tl) sin pat + (¢ coS pal) — %’- sin p..ll) COS Pa ]sm nle

n=135 rn
fort 2 ¢t. (9)

Although this solution represents an undamped vibration of infinite duration, the
counterpart of which is not found in physical structures, it may produce valuable informa-
tion, particularly in the cases of brittle structures or structures with a definite yield point.
For such structures the critical displacement or stress is known. The solution will reveal
whether the critical value is reached, and if so, the time at which this occurs, as well as
fully describing the motion prior to fracture or yielding.

If the solution is further particularized to the case of the specific blast pulse

P(z,t) = Poc™*
Eq. 8 reduces to

< ' a .
wz,t) = PAlp.(a‘+p){ —cosp.l+;)—smp.}sm >

n=13.6 "

Although theoretically this pulse 18 of infinite duration, its effect on the structure
soon becomes negligible. For normal values of a the exponential term rapidly becomes

8 ORO-T-198
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negligible as ¢ increases, leaving what is sensibly a free vibration of determinate amplitude.

The other limiting case is that of a structure of which the elastic restoring forces are
comparatively so weak that they may be neglected. This amounts to setting the shear
modulus G equal to zero, in which event the structural resistance law pecomes that of the
Newtonian fluid, Fig. 1(b). For this case the general Eq. 6 and 7 reduce to:

x ¢
wizl) = S 2—; sin "—;’li‘f Ho(t)]1 — e %=1} dr for0 st St (10)
n=138 “Un 0
w(zt) = w(z,tl) + 5!/-1 {1 — e~#0-t)} gin n;rTx fort 2 ¢,. (i1)
n=138""

As an illustration of the nature of these solutions, consider the blast loading of a
structure having the dimensions 75 ft X 75 ft X 100 ft (height) which is located at a distance
of 3600 ft from the ground zero of a ‘“nominal” atomic bomb. Then, by approximate
methods (3), the impulsive loading function may be estimated to be:

0 ; fort <0
P(z.t) = P(t) = 324000( - 0—7)e—m for0 <t < 0.7
) ' for t > 0.7 sec.,

where the origin for time is taken as the instant when the shock wave reaches the structure.
A plot of this loading function is ineluded in Fig. 4. The remaining necessary data were
assumed to be: A = 100 sq ft, weight = 322 b cu ft, and P(t) = 405,000 b sec, sq ft.

During the non-zero portion of the pulse the displacement function, obtained by
substituting these data in Eq. 10, is

w(z,t) = 0.14733 i

1 . nxz[20ni(n? — 2)te=®* — n(13n? — 24)e-3 + 4(Tn? — 13)e-10~%
2 gk | = e R e e + 131
n=135

'niSlll (n’—2)’

The displacements of points originally on a vertical line, computed from this solu-
tion, are shown graphically in Fig. 4 for successive instants of time during the pulse. Also
shown is the velocity-time variation of representative points on the structure. It may be
seen that the structure is substantially at rest by the end of the pulse, making unnecessary
the determination of a separate solution for ¢ > (,. This feature is a result of the particular
parameters chosen for this example, and generally would not be the case. The limiting
displacement, which for all practical purposes is reached during the pulse, is:

< | . nwz
w= 1.916‘-12'3'5’—1—, sin — -

Although theoretically the velocities do not become identically zero in finite time
for Eqs. 10 and 11, the presence of internal friction in real materials would suffice to bring
the structure to rest when the velocities become sufficiently small.

Attention should be called to the basic difference between this solution and that
for the preceding cases. In the absence of elastic restoring forces there is no vibration, and
permanent deformation of magnitude dependent upon the applied blast pulse occurs.

In the preceding analysis it was assumed that the coefficients G, p, u, A were con-
stants throughout the structure. Solutions may be obtained for more complicated cases
where these coefficients vary with the longitudinal dimension » by use of numerical methods.

ORO-T-198 9
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When the coefficients are functions of the displacement or its derivatives one encounters an
important class of non-linear problems, which are beyond the scope of this study. How-
ever, a treatment will now be given of an important technological case in which the viscosity
is distributed throughout the height of the structure in a discrete or discontinuous manner.
In this case, the structure is also assumed to be rigid except at the interfaces of adjoining
rigid blocks.

ORO-T-198 11
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BLAST LOADING OF CEMENTED RIGID BLOCKS

Another structural model of considerable interest is that of a vertical system of
rigid masses M acted upon by external impulsive forces P and coupling forces F which are
internal to the structure, as shown in Fig. 5. In this model it is assumed that the coupling
forces are transmitted by intervening material of negligible mass. This model is especially
applicable to structures composed of massive blocks of masonry cemented together; it
also has application to buildings for which the mass may reasonably be assumed to be con-
centrated at floor levels. The latter application was suggested in Appendix A of Ref. 3
and was used earlier by Biot (11) for a building considered as a two-degree-of-freedom system
subjected to earthquake motions.

As a result of the representation of the structure as a system with a finite aumber of
degrees-of-freedom the equations of motion are n ordinary differential equations of the
form

Muw, - F, ,+ F, = P,(), (12)
wherer =123, ..., n

In the notation employed (Fig. 5), the subscript letters identify a particular mass
and the coupling material immediately below it. The displacement functions w(t),
w.(l), . . ., wa(l) are used to define the motions of the n masses. The sign convention for
positive forces and displacements is that indicated in Fig. 5. The boundary conditions for
this structure may be expressed as:

Fo=0, wa., =0.

The coupling forces F may be of many types, some of the most important being
those based on the resistance iaws depicted in Fig. 1. In the case where the coupling
forces result from the elastic shear deformation of the coupling material, Eq. 12 becomes:

o .", -l’-"'—l | .‘l,_.|(l',_.| /1 '(I" . A'(l" _ >
Mo, R | u..l+( o + A )w, A Wy = Po(0), (13)

wherer = 1,2, ..., n
A = effective shearing area of designated coupling material
GG = effective shear modulus of designated coupling material

h = height of designated coupling material

The solution of Eq. 13 may be obtained by any of the standard methods, such as
use of the operational calculus, at least for a specific problem.

This solution will have the form of an undamped vibration of each element of the
system. The remarks made pertaining to the value of the solution for the undamped
continuous structure apply equally well to this solution.

The case of the discrete system with coupling forces of the St. Venant body type
(Coulomb friction or ‘‘perfectly plastic material’’) has been considered in a previous
paper (2) and also examined with greater thoroughness in an unpublished essay (12).

12 ORO-T-198
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Coupling forces of the viscous type may also occur, as exemplified by the case of the
structure composed of massive blocks cemented together by an essentially viscous material.
For such structures Eq. 12 becomes:

. p,_lA'_! % H»'_|A r—1 Mr) _— “"_A., . - 14
M,w, —h'_‘ weo + ( h'—‘ + h' w, " Wesr P'(t)v ( )
wherer =123,..., n.
Solutions of Eq. 14 may be easily obtained for small values of n; using the notation
- BeA.
r h' '

where r = 1,23, . . ., n, the solution for the single-degree-of-freedom system is:
¢ Cy c_l_ - .
w() = & f Py(7)I1 - e” 377} dr + w(te) + ?,i 11— e 2%y (8), (15)
1 [ 2

and for the two-degree-of-freedom system is:

w0 {055+ G )

_ l ._l_ (a + b),((“ + C')) (@—)(1—7)
2b(M, + C.Cs esi=n] Py(1)

)

+ 2_71(_'_ 12b + (a — b)e'e*¥ - — (g + b)e"“’“")lpa(f)]df + w(lb)
2]

(S )i+ i) 1= (1 - D = (1.2 v

+ tbnz(bfo) [elet) - _ ple—bri-t)} (16)

'D’(‘) - ﬁj:[{% + (a = b)e(oﬂ)(t—v) - (a + b)((n—O)(l—v)'P'(f)

{3 (G- )i — (S 4 g ool peya

M,
M_' : M? : - !( - 9) (e4)(1—
+ wn(b) + {C, w, () + C, w:(fo)}{l 3 1 5)¢ to)
_ %(1 + %)e(.-o)u-u)} + '_”’2_(:2 [elasdli=m) _ pla—b)i-t)} a17)
- (Ml + M!)C] + M|Cg
where a M M,

_ V(M + My)'CY + 2M\(M, - My)C.Cy + MICT
2M M,

It frequently happens that the external load function has different analytical defini-
tions for succeeding intervals of time (Fig. 6).

In such cases it is necessary to obtain solutions for each interval, using the final
conditions of displacement and velocity for one interval as initial conditions for the next
interval. The solutions for one and twe degrees-of-freedom are presented in s form

b

ORO-T-198 13
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DISPLACEMENT

where initial conditions are specified at ¢ = f, an arbitrary time, making possible the direct
determination of the solution for each interval with respect to the same origin for time.
Obvious simplifications can be made when the initial conditions are specified at ¢ = 0 or
when the initial displacement or velocity is zero. Equations 15, 16, and 17 also give the
solution for the period after the impulse has ceased, provided the upper limit of integration
is taken to be ¢, where ¢, is the time of the end of the impulse.

As an illustratign of the nature of the response of a two-degree-of-freedom system
with coupling forces of viscous type, Fig. 7, consider as an example a system having the
simple parameters:

M =3 C,=1

Al: = 5 (Yg = 2,
which is subjected to the triangular blast pulses P\(t), P:(t) shown in Fig. 8. These pulses
may be describea analytically by the functions:

(0 fort <0 0 fort <0
1),(:)-110-0.5: for0 S¢s20 Py(t)={24-3t for0 st s8
0 for t > 20, 0 fort > 8.

Introducing these data into Eq. 16 and 17, the complete displacement-time relations
are found to be:

w(t) =0 tso0
= 252.56e= '781¢ — 3910~ 8% — ] 12612 + 41.51t — 248.65 0sts8
= — 5.20¢ 1" 4 330.50e- "*"* — 0.376¢% + 19.00t — 54.39 83ts2
= — 756.14e 17 — 36732%¢~ %% + 197.73 t220

wy(ty = 0 tso
= [19.26¢— 118! 4 4 98¢~ 8% — (.875( + 24.76¢ — 124.24 0sts8
= — 2.520e ¢ — 424 52~ V¥ — (0.125¢2 + 6.75¢ + 2.60 8sts20
= — 356.75¢ 17 + 486494¢~ V¥ 4 97.92 t220

VELOCITY
o

w

Fig. 9
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These displacement-time functions, and the velocity-time functions which may be
easily obtained by differentiation, are presented graphically in Fig. 9. The maximum dis-
placements shown in this figure are approached asymptotically as time increases indefinitely.
They serve as an upper bound which would be reached eventually if there were no other
resisting forces present. As might be expected, this solution has much in common with
that for the continuous structure having internal viscous resistance alone, Fig. 4. It is
also interesting to compare the results of Fig. 9 with those presented in *‘ Blast Loading of
Structures’ (2), in which an example with the same parameters was solved for a system
having the resistance law of the modified St. Venant body, Fig. 1(c).

16 ORO-T-198




DISCUSSION AND CONCLUSIONS

The type of analysis presented in this paper is considered to be of value in predicting
damage caused by blast against a multi-storied building or similar structure. This point
of view is advanced in spite of obvious defects that exist in idcalizations of the type in-
volved. As a starting point some such analysis is essential. Statical analysis gives prac-
tically no useful information about dynamic strains and deflections. Also, any analysis
which assumes that the structure is rigid during the first portion of the time of application
of the load is misleading. This assumption is sometimes tempting in orde: to apply simpli-
fied theories of plasticity. An essential difficulty in such approach is the lack of knowledge
of the distribution of momenta caused by the first phase of the loading.

The Biot method (11) of treating shear-frame buildings may be utilized in the analysis
of similar structural units occurring in equipment and machines subjected to dynamic loads.
However, in order to make the analysis more realistic it will be necessary to determine
suitable stress-strain laws in the particular cases of interest.

Investigations involving the firmo-viscous hypothesis emphasize the need for more
reliable information on structural damping. While many tests have heen conducted to
determine the damping properties of materials the use of damping laws in structural
analysis is still in a rather embryonic stage. Considerable effort to remedy this situation
seems to be warranted at thc present time.

ORO-T-198 17
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